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New York University, NBER and CEPR

and

JORDI GALÍ
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We compare the performance of markets and tournaments as allocative mechanisms in an
economy with borrowing constraints. The economy consists of a continuum of individuals who
differ in their initial wealth and ability level. These must be assigned to a continuum of investment
opportunities or inputs of different productivity. With perfect capital markets matching is efficient
under both mechanisms. Markets, however, generate higher aggregate consumption because
of the waste associated with the production of signals under tournaments. When borrowing
constraints are present, tournaments dominate markets in terms of matching efficiency and, for
sufficiently powerful signalling technologies, also in terms of aggregate consumption.

1. INTRODUCTION

Economists have long noted that borrowing constraints can prevent market economies
from attaining efficient allocations. In their presence, the principle of allocating the ‘‘best’’
resources to those individuals who can use them more efficiently (and are, thus, willing to
pay more for them) is constrained by an affordability requirement: the best resources are
allocated to those who, being able to afford them, can use them more efficiently. Instru-
ments such as credit subsidies and taxes have usually been the main focus of the literature
that examines how efficiency can be improved when borrowing constraints are present.
Yet, most of the literature seems to ignore the fact that the choice of an allocative mechan-
ism is itself an important dimension of policy intervention. In this paper we investigate
the properties of one such alternative mechanism—a tournament.1

We place our comparison of markets versus tournaments in the context of a matching
problem à la Becker (1973). The assignment problem consists of matching investment

1. A tournament has the property that the allocation of ‘‘prizes’’ among individuals depends solely on
agents’ relative performance. Our motivation for considering a tournament-based mechanism as an alternative
to market prices comes in part from its applicability to reality. Tournaments are commonly used in many areas
of economic life: they characterize not only the awarding of prizes in contests, but they also play an important
role in the allocation of positions within hierarchical organizations, school and university admissions,
recruitment, etc.
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800 REVIEW OF ECONOMIC STUDIES

projects of varying quality or potential profitability with agents that differ in their ability
to exploit these projects. Relevant problems that may fall into this category include,
among others, the allocation of land to farmers, of advisors to students, the privatization
of firms, or the assignment of rank within a bureaucracy. For the sake of concreteness
we identify these projects as schools and our problem is one of matching individuals of
different ability to schools of different quality.

Our model consists of a continuum of agents that differ in terms of their initial wealth
and ability, and a continuum of schools each characterized by a given quality. The ability
of the individual and the quality of the school attended jointly determine the individual’s
future income. We assume that school quality and individual ability are complements, so
that the marginal return to school quality is increasing in ability.

The complementarity assumption implies, as in Becker’s matching problem, that the
efficient allocation is characterized by the matching of the ability rank of the student with
the quality rank of the school, i.e. by positive assortative matching. In the absence of
capital market imperfections, the price mechanism (i.e. a price for each school such that
demand equals supply) achieves the efficient allocation; higher-ability individuals are wil-
ling to pay higher prices for higher quality schools and the possibility of borrowing against
their future income ensures that the final allocation is independent of the initial wealth
distribution.

A tournament, by way of contrast, allocates individuals according to rank order in
some contest. We assume that an individual’s performance in the contest—her score or
signal—is an increasing function both of her ability and the amount of expenditures she
undertakes (think, for example, of the contest as a placement exam such as the SAT in
which the score obtained may depend not only on ability, but also on the quality of high
school attended, tutors hired, etc.). We assume that these expenditures are non-productive
(i.e. they do not, in themselves, contribute to output nor yield utility) and that the mar-
ginal cost of increasing any given score is non-increasing in ability. We show that with
perfect capital markets a tournament generates the same matches as does the market
mechanism and, accordingly, the same level of aggregate output. Yet, aggregate consump-
tion is lower under tournaments since resources are wasted in the production of signals.

Next we contrast the performance of markets and tournaments when there are bor-
rowing constraints. We show that tournaments always deliver greater output than mar-
kets. Intuitively, the reason for the above is that prices do not discriminate among
individuals except with respect to their willingness and ability to pay; accordingly, individ-
uals with the same level of schooling expenditures attend the same school, regardless of
their abilities. In a tournament, on the other hand, identical expenditures by agents with
different abilities do not lead to identical outcomes. In particular, by spending the same
amount higher-ability individuals produce higher scoresysignals than lower-ability individ-
uals; that makes higher-ability individuals effectively ‘‘less credit constrained’’ than those
with lower ability and identical wealth, thus allowing the former to afford a better school.
This tends to enhance the efficiency of the allocation under tournaments since, under our
assumptions, a social planner would wish to assign higher-quality students to higher-
quality schools.2 Whether aggregate consumption is also greater under tournaments is,
however, not guaranteed, since resources are wasted in the competitive production of

2. Freeman (1996), in a framework with identical agents and borrowing constraints, also obtains the result
that exams can improve efficiency. This result, however, is driven by the assumption that there are increasing
returns in production so that even an exam that is a pure lottery increases efficiency, by allowing agents to
specialize.
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FERNÁNDEZ & GALÍ MARKETS AND TOURNAMENTS 801

signals. We discuss the conditions on the tournament technology under which aggregate
consumption is also greater under tournaments than under markets.

Our paper is related to several branches of the literature. A small literature examines
the performance of tournament-based compensation schemes relative to individualistic
reward schemes (e.g. Lazear and Rosen (1981), Green and Stokey (1983), Nalebuff and
Stiglitz (1983)). These papers, unlike ours, are concerned with the relative efficiency of
tournaments in environments with moral hazard. Their focus is mostly on situations in
which agents are homogeneous and the question is how to extract the suitable amount of
effort from them given that effort is unobservable.

Second, there is also a relatively small literature that studies matching problems, i.e.
problems in which a set of heterogeneous individuals is mapped into a set of hetero-
geneous objects (which may also happen to be individuals, as in the marriage case) with
the payoff from each match depending on some characteristic(s) of both sides of the match
(e.g. Becker (1973), Cole, Mailath and Postlewaite (1992), Kremer (1993)), as well as
papers that have introduced search frictions into the matching problem (e.g. Sattinger
(1995), Acemoglu (1995), Shimer and Smith (1996), Burdett and Coles (1996)). Our contri-
bution to this literature consists in the analysis of the implications of borrowing con-
straints, and their interaction with alternative allocation mechanisms, for the outcome
of an otherwise standard matching problem. The introduction of borrowing constraints
complicates this problem considerably since it introduces an additional source of hetero-
geneity—wealth—to the usual unidimensional matching problem.

Lastly, our paper is related to a recent literature on education, income distribution
and borrowing constraints (e.g. Loury (1981), Banerjee and Newman (1993), Fernandez
and Rogerson (1997, 1998), Galor and Zeira (1993), and Benabou (1996)). The main con-
cern of that literature is the study of the steady-state income distributions that result from
the presence of borrowing constraints. In contrast, the focus of the present paper is on
the relative efficiency of alternative allocation mechanisms when borrowing constraints
are present.

The structure of the paper is as follows. Section 2 describes the matching problem
and discusses the efficient allocation. Section 3 analyses equilibrium allocations under
market prices and tournaments under perfect capital markets. Section 4 characterizes the
effects on those allocations of introducing borrowing constraints, and compares the rela-
tive efficiency of tournaments and markets in such an environment. Section 5 summarizes
our main findings and concludes.

2. THE MODEL

The economy consists of a continuum of agents each of whom is characterized by an
endowment of ‘‘ability’’, a, and initial wealth w.3 To simplify exposition, we assume that
these agents are distributed uniformly on the unit square I2 ≡ [0, 1]B[0,.1], and hence that
these attributes are uncorrelated across agents.4 Although our results do not depend on
whether ability and wealth are observable, nonetheless, to make the question of what
allocation mechanism should be used in this environment interesting, it is best to think of
both of these as unobservable.

3. By ability we mean the efficiencyyproductivity with which a given agent can use a productive resource
of a certain quality.

4. Neither uniformity nor zero correlation is central to our results, but they permit easier diagrammatic
and algebraic exposition.
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802 REVIEW OF ECONOMIC STUDIES

There exists an exogenous endowment of investment opportunities which vary in
their ‘‘quality’’, reflected in the output they generate when combined with a given ability.
Examples are schools of different quality, plots of land of varying fertility, or oil sites,
firms, or nature parks of different potential profitability. For the sake of concreteness we
focus on the example of schools. The quality of a school is given by its index s∈[0, 1]≡ I.
Again, for expository simplicity, we assume that quality is distributed uniformly on the
unit interval.

An agent with ability a who is allocated to a school of quality s generates an output
(income) level X(a, s), where X: I2→ℜC can be thought of as a production function. We
assume X is twice continuously differentiable, bounded, with XaH0, XsH0 (i.e. output is
increasing both in ability and school quality), and XasH0, i.e. ability and school quality
are complements in production. This last assumption plays a key role in the characteriz-
ation of efficient allocations. We make two additional assumptions that facilitate expo-
sition: (i) X(0, 0)G0, (i.e. the lowest ability agent obtains a payoff of zero when assigned
to the lowest quality school),5 and (ii) Xs(a, s)F1, ∀(a, s)∈I2.6

Given the allocation mechanism and presence (or absence) of capital markets, agents’
actions take place within the following two-period structure: in the first period, agents
incur their desired level of expenditures (possibly borrowing if capital markets are operat-
ive), and are allocated to a school; in the second period they generate output, repay their
debt (if any), and consume. An agent chooses actions so as to maximize her utility from
consumption. The latter equals income X, plus initial wealth, minus any expenditures
realized to obtain this allocation, plus a possible lump-sum transfer. We assume that the
utility function is strictly increasing in consumption and normalize the payoff obtained
from not attending any school to equal zero.

Our assignment problem is to match each agent with a school. More formally, an
allocation is defined by a function S: I2→ I that assigns a school of quality S(a, w) to
agent (a, w), for all (a, w)∈I2. Let Φ (a, s) ≡ ea

0 e1
0 1[sAS(z, w)]dwdz denote the joint distri-

bution for (a, s) induced by a given allocation S, where 1 is an indicator function such
that 1[z]G1 if zn0 and 1[z]G0 otherwise, for all z∈ℜ. We say that an allocation S is
feasible if Φ (1, s)Gs, for all s∈I, i.e. the measure of individuals that are allocated to
schools of quality no greater than s exactly matches the measure of schools of that quality
range.

Before proceeding to characterize the equilibrium under perfect capital markets, it is
useful to describe the solution to the social planner’s problem.

2.1. The efficient allocation

The social planner’s problem here corresponds to that of Becker’s (1973) matching prob-
lem. In particular, the efficient allocation is given by a monotonically increasing mapping
from agents’ abilities to school qualities, i.e. by positively assortative matching. Not sur-
prisingly, the efficient allocation is independent of the wealth distribution, since wealth
does not enter the production function.

The efficiency of positively assortative matching is usually demonstrated by showing
that, for any other allocation in which some (positive measure) of agents of ability a are
matched with schools of quality s ≠ a, switching the assignment of mismatched agents so

5. As will be clear further on, this assumption, while unessential, allows us to get rid of price equilibria
under perfect capital markets that differ from each other solely by a constant.

6. The role of this last assumption is to rule out ‘‘corner’’ solutions, as will be seen in Section 4.
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that each ability level a is matched with school quality sGa leads to an increase in output.7

Here we instead present an alternative proof which, though less transparent, relies on a
mathematical result (a first-order dominance theorem for a bivariate distribution orig-
inally due to Levy and Paroush (1973)) that will play a key role in the derivation of some
of the main results of Section 4.8

Consider two absolutely continuous cumulative distribution functions F*(x1 , x2) and
F (x1 , x2). Let f * and f be the associated density functions, respectively, with ranges given
by [0, bi ], for iG1, 2. Let U(x1 , x2) be a continuous function with U12n0. Furthermore,
let the marginal distributions of both functions be identical with F1(x1) given by
ex1

0 eb2

0 f (t, x2)dx2dt, and an analogous definition for F2(x2). Define

∆WG#
b1

0
#

b2

0

U(x1 , x2)∆f (x1 , x2)dx2dx1 , (2.1)

where ∆f denotes f *Af (and ∆FGF*AF ). Note that ∆W has an interpretation as the
difference in expected utility under the f * distribution relative to the f distribution.

Lemma 2.1. (Levy–Paroush). If ∆F (x1 , x2)n0, ∀(x1 , x2), then ∆Wn0.

Proof. See Appendix. u u

We are now set to prove that the efficient allocation in our model assigns all agents
with ability a to school sGa. Let Φ*(a, s) be the cumulative distribution function gener-
ated by the allocation S*(a, w)Ga, ∀(a, w)∈I2. Clearly, Φ*(a, s)Gmin [a, s]. Let Φ (a, s)
be the cumulative distribution function associated with any alternative feasible allocation
S. We are interested in evaluating ∆YGe1

0 e1
0 X(a, s) [dΦ*(a, s)AdΦ (a, s)]dads, i.e. the dif-

ference in aggregate output between allocation S* and allocation S (where S differs non-
trivially from S*, i.e. Φ*(a, s)≠Φ (a, s) for some (a, s)).

Theorem 2.2. ∆YGe1
0 e1

0 X(a, s)[dΦ*(a, s)AdΦ (a, s)]dadsH0.

Proof. See Appendix. u u

3. THE ECONOMY WITH PERFECT CAPITAL MARKETS

Throughout this section we assume that agents have access to an external market for
(riskless) loans.9 Without loss of generality we assume that the interest rate on these loans
is zero. Thus, individuals borrow freely in the first period (subject to a solvency require-
ment), and repay their outstanding loans in the second period.

3.1. Markets

With markets as the allocative mechanism, individuals are confronted with a (common)
price schedule P, assigning a price to each school type. An equilibrium with market prices

7. As the proofs of the two lemmas show, this result follows entirely from XasH0.
8. The version of the Levy–Paroush result presented here (as well as its proof) follows closely the presen-

tation in Atkinson and Bourguignon (1982).
9. Assuming that the loan is external and riskless allows us to avoid endogenizing the interest rate which

is not the focus of our inquiry.
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is given by a price function P: I→ℜC (mapping each school quality s into a price P(s)),
and a feasible allocation S such that, ∀s∈I, ∀(a, w)∈I2, we have10

(m1) X(a, S(a, w))AP(S(a, w))nX(a, s)AP(s),

(m2) X(a, S(a, w))AP(S(a, w))n0.

The first condition states that, given P, no individual should strictly prefer another
school to her equilibrium assignment. The second condition is a participation constraint
requiring a nonnegative net payoff from the equilibrium school assignment (since, by
assumption, an individual can always choose not to attend any school and thereby obtain
a payoff of zero). Finally, the requirement that S is feasible is equivalent in our case to a
market clearing condition.

Our assumptions on X imply that an equilibrium price schedule P must be strictly
increasing (otherwise schools dominated in both cost and quality would be unattended),
continuous (otherwise schools of quality greater than but close enough to the point of
discontinuity would also be unattended), and bounded in its domain (given the bound-
edness of X and the participation constraint). It follows that P is also (almost everywhere)
differentiable, a property that we use extensively in what follows.11

Thus, taking the price schedule as given, an agent with ability a chooses s to maximize
X(a, s)AP(s), yielding the following first and second-order conditions

Xs(a, S(a, w))AP ′(S(a, w))G0, (3.1)

Xss(a, S(a, w))AP″(S(a, w))F0, (3.2)

for all (a, w)∈I2. As deduced before, from (3.1) and XsH0 it follows that P ′(s)H0, i.e. the
price of a school is strictly increasing in its quality. Furthermore, applying the implicit
function theorem to the same condition yields S(a, w)GS(a, w′ ) ≡ S(a), for all (a, w),
(a, w′ )∈I2, implying that agents with the same ability choose the school of the same qual-
ity regardless of their initial wealth.12

Next, total differentiation of (3.1) yields S ′(a)GXasy(P″AXss)H0. Combined with
the feasibilityymarket clearing requirement, strict monotonicity of S implies the allocation
rule

S(a)Ga, ∀a∈I, (3.3)

i.e. positively assortative matching obtains in equilibrium. Finally, substitution of (3.3)
into (3.1), and forward integration yields the equilibrium price schedule

P(s)G#
s

0

Xs(z, z)dz, (3.4)

where we have made use of the result that P(0)G0 as implied by the assumption that
X(0, 0)G0 and the participation constraint.

10. Note each school is maximizing profits, i.e. each is charging the highest price it can and still obtain
students given the prices of all other schools.

11. Because we cannot guarantee that P is differentiable everywhere on the unit interval, many of our
results below should be qualified as holding ‘‘almost everywhere.’’ Since none of the qualitative results or con-
clusions are affected by that property we will henceforth refrain, for expository convenience, from continuously
reminding the reader of that technical qualification.

12. This, of course, is a consequence of the existence of perfect capital markets.
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Under the price mechanism and perfect capital markets, aggregate output (denoted
by Ym* in this environment) is given by

Y m*G#
1

0

X(a, a)da. (3.5)

Aggregate consumption, Cm*, is given by aggregate wealth plus aggregate output
Ym*.13 Hence,

C m*G
1

2
C#

1

0

X(a, a)da, (3.6)

where the first term on the right-hand side of (3.6) corresponds to aggregate wealth
e1

0 wdw.
It is useful to note here that, not surprisingly, in the absence of capital market imper-

fections the allocation achieved by the market equilibrium as expressed in (3.3) is efficient.
Next we turn to the derivation of equilibrium when the allocation mechanism is a
tournament.

3.2. Tournaments

First we introduce the technology and tournament rules which are common to both capital
market environments. A tournament allocates each individual to the school whose quality
rank equals the rank of her performance in the contest.14 We shall hereafter refer to this
performance as the signal and to the contest technology as the signalling technology,
although no agent is trying to make any inferences about the ability of the contest partici-
pants from these scores. Given a signalling technology, the score that an agent achieves
in a tournament depends on her ability and on the amount of resources she chooses to
spend in generating a signal. We assume that the resources expended by the agent in
enhancing her signal are not productive, i.e. they do not in themselves contribute to output
and, ceteris paribus, they reduce aggregate consumption.15

The signalling technology is represented by a mapping V: IBℜC→ℜ, with V(a, e)
measuring the signal or score generated by an agent of ability a who spends resources
e. Often it will be useful to work with the associated cost function e(v, a), defined
implicitly by V(a, e(v, a))Gv, ∀a∈I, and ∀v∈ℜ. We make the following assumptions:
V is continuously differentiable; Van0 and Ven0 (both holding with strict inequality
in the interior of I2) i.e. signals are increasing in both ability and expenditures; Ve is
bounded above in the interior of I2; V(a, 0)G0, ∀a∈I, i.e. strictly positive expenditures

13. We are implicitly assuming that the resources used to pay for the schools are simply distributed to
some agent (say, a private owner or the government) who either consumes them or rebates them back to the
population in a lump-sum fashion. What matters here is that they are not considered wasteful, i.e. they do not
subtract from utility-yielding aggregate consumption.

14. Thus, the reader may wish to think of these schools or investment opportunities as being owned by
the state (or a non-profit institution) in the case of tournaments, since the owner does not receive a rent for
them.

15. One way to think of these expenditures is as diverting resources (e.g. tutors) from other activities in
which they have some positive marginal revenue product. While it may be thought that some portion of these
expenditures can help augment ‘‘ability’’ (and are thus productive), this reformulation of the problem simply
creates an additional investment opportunity where credit constraints are potentially binding, thus complicating
the analysis. Our analysis would not be affected, in any case, by allowing some fraction of expenditures to be
non-wasteful and transferred back to the population in a lump-sum fashion. As will be clear in the next section,
assuming wasteful signalling expenditures simply makes it more difficult for tournaments to dominate markets.
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are required to emit a positive signal.16 Furthermore, we assume evao0 (the marginal
cost of signalling is nonincreasing in ability). We let F : ℜC→ [0, 1] represent the cumu-
lative distribution function for the signals generated in the economy, i.e. F (v)G
e1

0 e1
0 1[vAV(a, E(a, w))]dwda, ∀v∈ℜC , where E(a, w) denotes the resources expended in

signal-enhancing activities by agent (a, w).17

In order for the signals’ cumulative distribution function to constitute an equilibrium
under perfect capital markets, each agent’s expenditure choice and consequent school
assignment must be utility maximizing given F. More formally, an equilibrium with tour-
naments and perfect capital markets is given by a feasible allocation S and a signal distri-
bution F satisfying, ∀(a, w)∈I2, ∀s∈I, ∀v∈ℜ

(t1) S(a, w)GF (V(a, e(F−1(S(a,. w)), a))),
(t2) X(a, S(a, w))Ae(F−1(S(a, w)), a)nX(a, s)Ae(F−1(s), a),
(t3) F (v)Ge1

0 e1
0 1[vAV(a, e(F−1(S(a, w)), a))]dwda,

(t4) X(a, S(a, w))Ae(F−1(S(a, w)), a)n0.

Condition (t1) simply restates the allocation rule; i.e. an agent is matched to a school
whose rank in the quality distribution equals her rank in the signalling distribution. Con-
dition (t2) ensures that, given F, an agent’s expenditure maximizes her utility. Condition
(t3) ensures that the signal distribution that every agent takes as given when solving her
optimization problem is, indeed, the distribution observed in equilibrium. Condition (t4)
is the usual participation constraint.

Our assumptions on X and V guarantee that the function mapping school quality into
the associated equilibrium signals (i.e. F−1) is strictly increasing (since otherwise schools
dominated in quality but with a higher associated signal would be unattended) and con-
tinuous in school quality. Continuity follows since, otherwise, agents generating a signal
greater than the lower value at the discontinuity point would be better off be reducing
their expenditures by a discrete amount and attending a school of marginally lower qual-
ity. The previous properties imply that the cumulative distribution function over signals
F is also strictly increasing and continuous, and so both it and its inverse F−1 are (almost
everywhere) differentiable.18

Choosing s so as to maximize the payoff from attending school, X(a, s)Ae(F−1(s), a),
yields the following first and second-order conditions

Xs(a, S(a, w))Gev(F
−1(S(a, w)), a)F−1′(S(a, w)), (3.7)

XssAevv(F
−1′ )2Aev(F

−1)″F0. (3.8)

Analogously to the market equilibrium, (3.7) implies that S(a, w)GS(a, w′ )GS(a),
for all (a, w), (a, w′ )∈I2. Hence, we have the expenditures by agent (a, w), E(a, w), equal
to e(F−1(S(a)), a) ≡ e(a), ∀(a, w)∈I2. Thus, as with the market mechanism, perfect capital
markets ensure that with tournaments agents’ initial wealth distribution has no impact on
the resulting equilibrium allocation.

To derive the equilibrium allocation of individuals, note that differentiation of (3.7)
with respect to a yields

S ′(a)G−
XasAevaF−1′

XssAevv(F
−1′ )2Aev(F

−1)″
H0,

16. The last assumption guarantees that agents with zero wealth are allocated to the lowest quality school,
simplifying the derivation of the equilibrium allocation under credit constraints.

17. Think of the tournament as an exam, whose score—the signal—depends on the agent’s ability and on
the amount she spends in order to prepare herself for that test.

18. As noted in Footnote 11, we will be assuming differentiability everywhere for expository purposes.
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where the sign of the inequality follows from our assumptions on X and e and (3.8). As
in the market case analysed above, strict monotonicity of S and feasibility imply

S(a)Ga, ∀a∈I, (3.9)

that is, the allocation rule under tournaments is identical to the one derived under markets
and, therefore, it corresponds to the efficient allocation.

It follows from (t1) and (3.9) that aGF (V(a, e(a))), implying that

1G(VaCVee′ )F ′, ∀a∈I, (3.10)

holds in equilibrium. This allows us to rewrite (3.7), evaluated at equilibrium, as the
differential equation

e′(a)GXs (a, a)A
Va(a, e(a))

Ve(a, e(a))
, ∀a∈I. (3.11)

Integrating (3.11) and making use of the result that the lowest ability agents attend
the lowest quality school to impose the participation constraint requiring e(0)G0, we
obtain an (implicit) expression for the equilibrium signalling expenditures

e(a)G#
a

0
3Xs (z, z)A

Va(z, e(z))

Ve(z, e(z))4 dz. (3.12)

Aggregate output is given by

Yt*G#
1

0

X(a, a)da, (3.13)

and aggregate consumption (i.e. initial endowment plus gross output minus resources
expended in the signalling process) is

Ct*G
1

2
C#

1

0

[X(a, a)Ae(a)]da. (3.14)

3.3. Markets vs. tournaments

Next we compare some of the aggregate outcomes under the two alternative allocation
mechanisms. First, and as a direct consequence of the equivalence between their equilib-
rium allocations, we have

Yt*GYm*, (3.15)

i.e. aggregate output is the same under markets and tournaments. Yet, and because of the
waste associated with signalling, the same equivalence does not carry over to aggregate
consumption, which is higher under markets by the amount of expenditures realized under
tournaments, i.e.

Cm*ACt*G#
1

0

e(a)daH0. (3.16)

Why do markets and tournaments attain the same equilibrium allocation? In an
environment with perfect capital markets, individuals are sorted among different invest-
ment opportunities in response to their differential willingness to pay or to signal for these
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opportunities. Higher-ability individuals are, ceteris paribus, willing to pay more or to
produce a higher signal for higher quality schooling than lower-ability individuals. This
sorts the former into higher-quality schools and thus reproduces the same allocation under
both systems.

Perhaps the above is most easily understood by noting that a single-crossing con-
dition applies in both environments. Consider markets first. There we can write an individ-
ual’s payoff as u(s, p; a)GX(a, s)Ap. The slope of an individual’s indifference curve in
(s, p) space is given by dpydsuuGūGXs(a, s). Note, as illustrated in Figure 1, that the slope

FIGURE 1

of this curve through any (s, p) point is increasing in a, i.e. ∂(dpydsuuGū)y∂aGXas(a, s)H0.
That is, for a given increase in s, the amount that higher-ability individuals are able to
pay and still keep their utility constant is greater than for lower-ability individuals. But
this necessarily implies that in any equilibrium in which the price of schools differ, higher-
ability individuals will be allocated to higher-quality schools.

A similar argument applies for tournaments. There, an individual’s payoff can be
written as u(s, v; a)GX(a, s)Ae(v, a). The slope of the individual’s indifference curve in
(s, v) space is given by dvy(ds) uuGūGXs(a, s)yev(v, a). Note that the slope of this curve
through any (s, v) point is increasing in a, i.e. ∂(dvyds uuGū )y∂aG(XsaevAevaXs )ye2

vH0,
indicating, as before, that for a given increase in s, higher-ability individuals are able to
increase their signal by a greater amount than lower-ability individuals and keep their
utility constant. Again, this necessarily implies that with perfect capital markets, higher-
ability individuals will be allocated to higher-quality schools.

Note, however, that just as the same assignment of individuals to schools under both
allocation mechanisms does not imply the same aggregate consumption, neither does it
imply the same expenditures in equilibrium. To see this we can combine (3.4) and (3.12)
to obtain

P(s)Ae(s)G#
s

0

Va(z, e(z))

Ve(z, e(z))
dzH0, ∀s∈(0, 1]. (3.17)
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As indicated by (3.17), the price of a given quality school in the market equilibrium
is never below the expenditure needed by an agent with ability a to obtain the same
assignment under tournaments. A simple variational argument may help us gain some
intuition for this result. First, note that, in equilibrium, the additional expenditure (i.e.
the marginal cost) required for an individual in school s with ability aGs to switch to a
school of quality sC∆s must equal, as ∆s→0, the marginal benefit, i.e. Xs(s, s) under both
allocative mechanisms. Under market prices that amount is given by P(sC∆s)AP(s), or
P′(s) when considering an infinitesimal change. Under tournaments the marginal cost is
given by e(F −1(sC∆s), s)Ae(F −1(s), s) or, as ∆s→0, it is given by ev(F

−1(s), s) F−1′(s)G
ev(VaCVee′ )GVayVeCe′. Since in both cases marginal costs must be equated to marginal
benefits, it follows that P ′(s)GVayVcCe′(s)GXs(s, s), and thus that e′(s)FP ′(s). More
intuitively, and following the single-crossing logic developed earlier, a higher-ability agent
requires lower expenditures to ‘‘separate herself out’’ in a tournament than in a market
environment because in order to replicate her signal a lower-ability agent must do more
than simply match her expenditures (which is all that he would need to do in a market
environment)—he must also compensate for his lower ability by spending an additional
amount given by VayVe .

The tournament equilibrium has some additional interesting properties relative to the
market equilibrium. First, although we have established that prices must be increasing in
the quality of school, note that this property does not carry over to expenditures under
tournaments. With the latter, it is the magnitude of the signals that must be increasing in
the quality of schooling, but this does not imply that expenditures be increasing as well
(note that in equation (3.11), e′ may be negative). The reason for this is related to the
intuition given above. Depending on the sensitivity of the signalling technology to the
increment in ability, an agent with higher ability may be able to achieve the signal associ-
ated with her school with lower expenditures that an agent attending a lower quality
school.

Second, note that in the limit, as VayVe→0, the solution to the tournament differen-
tial equation is identical to that under markets, i.e. expenditures are the same under both
systems. In this case signalling is not responsive to ability, but only to expenditures, con-
verting the tournament technology into a price mechanism (except that again these expen-
ditures are wasteful). On the other hand, as VayVe→S, expenditures under the
tournament go to zero so that both tournaments and markets not only achieve the same
allocation, but they also are equally efficient since there are no longer any wasteful expen-
ditures associated with tournaments. In this case tournaments respond only to ability and
not to expenditures, allowing the efficient allocation to be reached without any wasteful
expenditures.

4. THE ECONOMY WITH BORROWING CONSTRAINTS

In this section we assume that there are no capital markets that permit the financing of
expenditures beyond an agent’s wealth, whether on schools directly, as is the case under
market prices, or on the generation of signals, as is the case under tournaments. Although
we do not model the microfoundations for this imperfection here, it can be thought of as
arising from the absence of an enforcement technology that allows contracts that promise
future repayment to be honoured. Alternatively, if output cannot be observed, and X is
now interpreted as the expected value of output, then the usual moral hazard problems
may prevent the capital market from functioning.
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4.1. Markets

A market equilibrium with credit constraints is given by a price schedule P: I→ℜC mapping
school qualities into prices, and a feasible allocation S, that respects the same participation
constraint (m2) as before but that now must maximize utility subject to the constraint
that an agent’s expenditures cannot exceed her wealth, i.e. (m1) must be replaced by

(mc1) X(a, S(a, w))AP(S(a, w))

nX(a, s)AP(s), ∀s such that P(s)ow

and P(S(a, w))ow.

As in the case of perfect capital markets (and for the same reasons), the equilibrium
price function P(s) must be strictly increasing, continuous, bounded, and differentiable.
Thus, utility maximization implies

Xs(a, S(a, w))AP ′(S(a, w))n0, ∀(a, w)∈I2, (4.1)

with the borrowing constraint requiring P(S(a, w))ow. The first-order condition must be
met with strict equality if P(S(a, w))Fw.

In order to characterize equilibrium we need to describe the assignment of agents to
schools. Before proceeding with the formal derivation in a series of lemmas below, we first
characterize this allocation informally. All proofs have been relegated to the Appendix.

Associated with each s is a lowest level of ability, a(s). For any given s and its associ-
ated a¡(s), we show that for levels of wealth greater than the price of this school, agents
with this ability level will be effectively unconstrained and optimizing given the entire
price schedule. Hence Xs(a¡(s), s)GP ′(s), and all agents of that same ability level that can
afford to attend s will also do so. Who else will attend s? The remaining agents that attend
s will have higher ability and be exactly constrained, i.e. their spending will exactly equal
their wealth.

We will show that for each ability level there is an optimal s which all agents (of that
ability level) who can afford it attend, and all constrained agents attend the highest quality
school that they can afford, i.e.

S(a¡(s), w)G5s, ∀w∈[P(s), 1],

P−1(w), ∀w∈[0, P(s)].
(4.2)

Furthermore, we will prove that a¡(s) is increasing in s. Hence, the allocation of agents to
schools s′ and s″, s′Hs″, can be depicted as in Figure 2. On the horizontal axis we measure
s and a¡(s). On the vertical axis we represent w and P(s). Given credit constraints, we must
have P(s)o1 and hence this figure can be restricted to the unit square. The schedule P(s)
depicts the equilibrium price schedule. Note that a¡(s) must lie to the left of s since other-
wise, for any P(s)H0, the set of agents with ana¡(s) and wnP(s) would be smaller than
1As which is the measure of capacity of schools of quality greater than s. The set of
agents that attend school s″ are those on the southwest boundary of the shaded area in
Figure 2, with agents within that area attending a school at least as highly ranked as s″
(and similarly in the case of the smaller rectangle for s′ ).

We now turn to the formal derivation of these results. The first two lemmas establish
that the price of the lowest quality school equals zero whereas that of the highest quality
is strictly smaller than one. This ensures that, for each ability level, some agents are always
unconstrained.

ps322$p850 11-03-:0 08:59:18
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FIGURE 2

Lemma 4.1. P(0)G0.

Lemma 4.2. P(s)F1, ∀s∈[0, 1].

Next, we define Q as the set of all agents whose wealth is not smaller than P(1), i.e.
Q ≡ {(a, w): wnP(1)}. Note that by the previous lemma this set has positive measure. The
next lemma shows that unconstrained agents (i.e. those in Q) sort by ability level into
schools, with higher ability individuals attending higher quality schools.

Lemma 4.3.

(i) For all (a, w), (a′, w′ )∈Q, if aHa′, then S(a, w)HS(a′, w′ );
(ii) S(a, w″ )GS(a, w), for all (a, w)∈Q such that w″HP(S(a, w)).

What is the intuition for the allocation described above? Note that an implication of
the single-crossing condition obeyed by indifference curves in this model is that if an agent
(a′, w) prefers s′ to s″, s′Hs″, then so must all agents with aHa′. Unlike the complete
markets environment, however, this no longer implies perfect sorting since not all wealth
levels of a given ability can afford the associated price. Consequently, market clearing
dictates that the price must be such that schools get ‘‘filled’’ by including individuals of
lower ability. By single-crossing again, as we proceed to schools of higher quality, and
consequently higher prices, those individuals who are most willing to pay the increased
price will be those with higher ability.

The preceding discussion allows us to define a function S: I→ I, as S(a) ≡ S(a, w),
∀(a, w)∈Q. Note that any agent (a, w) with wnP(S(a)) will be able to afford the school
chosen by the agent with the same ability and highest wealth (and who was shown to be
unconstrained). Thus these agents will choose the same school, S(a). Hence S(a) represents
the quality of the school attended by all agents with ability a who are effectively uncon-
strained. Its properties are reported in the following lemma.
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Lemma 4.4. (i) S is strictly increasing, (ii) S(0)G0, (iii) S(1)G1, (iv) S is continuous,
(v) S is (a.e.) differentiable.

Let a¡ : I→ I be the inverse function of S. By construction a¡(s) represents the ability of
the unconstrained agents that attend school s (who are, in turn, the lowest ability agents
attending that school). The properties of a¡ , stated as a corollary of Lemma (4.4), follow
directly from those of S.

Corollary 4.5. (i) a¡ is strictly increasing, (ii) a¡(0)G0, (iii) a¡(1)G1,, (iv) a¡ is continuous,
(v) a¡ is (a.e.) differentiable.

Notice that, differentiating the first-order condition (given by Xs(a¡(s), s)GP ′(s)), we
obtain

a¡ ′(s)G−
XssAP″

Xas

H0, (4.3)

where the numerator is the second-order condition of the agent’s maximization problem
and its strict negativity is guaranteed by the previous corollary.

Corollary 4.6. P ′(s) is continuous and (a.e.) differentiable.

We can also show that the participation constraint will hold with strict inequality for
all agents (but for a subset of zero measure attending school sG0). Formally, ∀(a, w)∈I2

such that S(a, w)H0, we have

X(a, S(a, w))GX(a , 0)C#
S(a,w)

0

Xs(a, z)dzH#
S(a,w)

0

Xs(a¡(z), z)dzG#
S(a,w)

0

P′(z)dzGP(S(a, w)).

Next we define the sets R(s)G{(a, w)uaGa¡(s), wnP(s)} and T(s)G{(a , w)uwGP(s),
aHa¡(s)}. The last proposition in this section characterizes the set of agents allocated to
any given school s in equilibrium (see Figure 2) as the union of these two sets.

Proposition 4.7. S(a, w)Gs, if and only if (a, w)∈R(s) ∪ T(s).

The previous lemma implies that we can express the market-clearing condition as
(1As)G(1Aa¡(s))(1AP(s)) or, alternatively,

a¡(s)G
sAP(s)

1AP(s)
, ∀s∈I. (4.4)

This yields as an immediate conclusion that

a¡(s)Fs, ∀s∈(0, 1). (4.5)

Note that (4.5) directly implies that in the presence of credit constraints the market equi-
librium allocation is inefficient: as shown earlier, the efficient allocation requires that only
those individuals with aGs attend school s, irrespective of their endowment. Under credit
constraints the lowest ability individual attending s has ability strictly lower than s and
the highest ability individual in s has aG1.
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We are now set to derive equilibrium expenditures for unconstrained agents. Combin-
ing (4.1) and (4.4) we obtain the following differential equation in P(s)

P ′(s)GXs1sAP(s)

1AP(s)
, s2 , ∀s∈I, (4.6)

and, using the first-order condition and P(0)G0, we can derive the following expression
for equilibrium prices

P(s)G#
s

0

Xs(a¡(z), z)dz. (4.7)

Using P* and P0 to refer to the equilibrium price schedule with perfect capital mar-
kets and under credit constraints respectively, a¡(s)Fs and XasH0 imply

P0(s)FP*(s), ∀s∈(0, 1], (4.8)

i.e. the presence of borrowing constraints unambiguously lowers the price of schooling
for all qualities (with the exception of sG0). The intuition for this result is also straightfor-
ward. In equilibrium the marginal benefit from an increase in s for an unconstrained agent
with ability a¡ is Xs(a¡(s), s). This must equal the marginal cost of increasing s, i.e. P ′0(s).
The same is, of course, true under perfect capital markets, except that in that environment
aGsHa¡(s), ∀s∈(0, 1), and since XasH0, it follows that P ′0(s)FP*′(s) which, when com-
bined with P(0)G0 (in both environments), yields P0(s)FP*(s), ∀s∈(0, 1]. More intuit-
ively, the presence of credit constraints lowers prices since the marginal (i.e. ‘‘market
clearing’’) agent in each school is of lower ability than with perfect capital markets.19

4.2. Tournaments

An equilibrium with tournaments and borrowing constraints is given by a feasible allocation
S and a signal distribution F, satisfying the same requirements (t1)–(t4) as under perfect
capital markets except that the utility maximization condition (t2) must be modified to
take into account the absence of credit markets, i.e. ∀(a, w)∈I2.

(tc2) X(a, S(a, w))Ae(F−1(S(a, w)), a)nX(a, s)Ae(F−1(s), a),

∀s such that e(F−1(s), a)ow and E(a, w)ow.

As in the case of perfect capital markets, and for the same reasons, the distribution
function of signals F must be strictly increasing in equilibrium, continuous, and conse-
quently (a.e.) differentiable. A necessary condition for utility maximization is given by

Xs(a, S(a, w))Aev(F
−1(S(a, w)), a)F−1′(S(a, w))n0, (4.9)

with the borrowing constraint requiring E(a, w)ow, ∀(a, w)∈I2, and where (4.9) holds
with equality if E(a, w)Fw, i.e. if agent (a, w) is unconstrained.

As in the case of markets, we begin by characterizing informally the decisions of the
lowest-ability agents to attend a given s, (i.e. a¡(s)). Agents with ability a¡(s) attend school

19. As a consequence, some agents will be better off in the presence of borrowing constraints, even if the
latter are binding for them. Hence, policies that tend to eliminate may also be opposed by some agents who are
‘‘apparently’’ suffering the impact of such constraints. See Section 4.1.1 of Fernández and Galı́ (1997) for further
discussion of this point.
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FIGURE 3

s if they can afford it, i.e., as long as their wealth is sufficient to cover the cost of generat-
ing the signal needed to attend school s. Agents with the same ability but wealth below
the threshold needed to afford school s, attend the highest-quality school they can afford.
Thus we will show

S(a¡(s), w)G5s, ∀w∈[e(F−1(s), a¡(s)), 1],

F (V(a¡(s), w)), ∀w∈[0, e(F−1(s), a¡(s))).
(4.10)

Analogously to Figure 2 in the prior section, we can depict the equilibrium with
tournaments and borrowing constraints as shown in Figure 3. As before, the horizontal
axis depicts a and s, and the vertical axis measures wealth and expenditures. The schedule
denoted e(a) depicts the equilibrium expenditures of unconstrained agents with this ability
level. The set of agents that attend school s is represented by the southwest boundary of
the shaded area, with agents within that area attending a school at least as highly ranked
as s. Note that, unlike the case of markets, agents with ability greater than a¡(s) do not
have the same expenditures as the latter. Instead, the shaded area is downward sloping
indicating that as a increases, the level of expenditures needed by an agent to generate the
signal associated with school s decreases. We now turn to the formal derivation of these
results.20

The following two lemmas characterize some properties of the expenditure function
in equilibrium.

Lemma 4.8. e(F−1(0), a)G0, ∀a∈I.

Lemma 4.9. e(F−1(S(a, w)), a)F1, ∀s∈[0, 1].

The first lemma states that agents that attend school sG0 incur no expenditures (and
thus generate a score or signal of zero given our assumptions on V ), while the second
lemma guarantees that in equilibrium all agents spend less than the maximum endowment.

20. The proofs in this subsection are very similar to the ones provided for markets, and hence have been
omitted. The interested reader can find them in Fernández and Galı́ (1997).
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Consequently, the first-order condition (4.9) will hold with equality for some agents, a
result that we will use later.

The next lemma establishes that positive assortative matching obtains among the
subset of agents who can afford to attend any school in equilibrium. Some additional
notation is necessary at this point. Let bs be defined implicitly by e(F−1(s), bs )G1. Let asG

max [0, bs ], that is, as represents the lowest ability that can afford to attend school s by
spending no more than one. Let Q(s) represent the set of agents who can afford to generate
the signal F−1(s) necessary to go to school s, i.e. Q(s)G{(a, w)∈I2, anas , wne(F−1(s), a)}.

Lemma 4.10. For all (a, w), (a′, w′ )∈Q(1), (i) if aHa′, then S(a, w)HS(a′, w′ ); (ii) if
aGa′ then S(a, w)GS(a′, w′ ).

Consider next agent (a, w)G(a1 , 1), that is the lowest ability agent who can afford to
attend school sG1 (and, thus, any other school). By the previous two lemmas this agent
is spending less than her wealth, and is attending some school s1GS(a1 , 1)F1. We can
associate with this school a set Q(s1) which, according to the definition above, is the set
of agents who can afford s1 . Note that the single-crossing property guarantees that all
agents (a, 1) in Q(s1) are effectively unconstrained. That is, although those members of
Q(s1) who have aFa1 cannot afford to attend some s∈(s1 , 1], it follows from the fact that
(a1 , 1) is an unconstrained agent yet chose to attend s1 , that no other agent with ability
lower than a1 would choose a school of quality greater than s1 , even if she could afford
it. Similarly, we can define as1

(the lowest ability agent who can afford to attend s1) by
e(F−1(s1), as1 )G1, as well as s2GS(as1 , 1) (the school attended by that agent), and the
associated set Q(s2) (i.e. the set of agents who can afford s2). Using the same logic as
before, we know that all agents (a, 1)∈Q(s2) are effectively unconstrained. Thus, by iter-
ation we can define a sequence of sets Q(1), Q(s1), . . . , Q(sj ), . . . , such that any agent
(a, 1)∈Q(sj ) is effectively unconstrained for all j. This iterative process, illustrated in
Figure 4, converges to some school sk (and associated set Q(sk )) such that S(0, 1)Gsk .

21

Hence, from this we can conclude that all agents (a , 1), for all a∈I, are effectively uncon-
strained and that, consequently, the following relationship must be observed:
Xs(a, S(a, 1))Gev(F

−1(S(a,1), a)F−1′(S(a, 1)), ∀a∈[0, 1].
The preceding discussion allows us to define a function S: I→ I, as S(a) ≡ S(a, 1), ∀a∈

[0, 1]. Note that any agent (a, w) with wne(F−1(S(a)), a) will be able to afford the school
chosen by the agent with the same ability and highest wealth (and who was shown to be
unconstrained). Thus the former will also be effectively unconstrained and choose S(a) as
well. Hence, S(a) represents the quality of the school attended by all agents with ability a
who are unconstrained. Its properties are given in the following lemma.

Lemma 4.11. (i) S is strictly increasing, (ii) S(0)G0, (iii) S(1)G1, (iv) S is continuous,
(v) S is (a.e.) differentiable.

Let a¡ : I→ I be the inverse function of S. Thus, a¡(s) represents the ability of the uncon-
strained agents attending school s (who are, in turn, the lowest ability agents attending
that school, since any agent with ability a′Fa will prefer a lower quality school, regardless

21. The assertion that the sequence cannot, by implication, converge to some as′H0, follows from the fact
that this would imply that lims→s′ dasydsG0. But, as is defined implicitly by e(F−1(s), as )G1, yielding

lim
s→s′

das

ds
G

ev(F
−1(s′ ), as′ )F

−1′(s′ )
ea(F

−1(s′ ), as′ )
G

Xs(as′ , s′ )
ea(F

−1(s′ ), as′)
H0, ∀a∈(0, 1].
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FIGURE 4

of her wealth). The properties of a¡ , as stated as a corollary of the preceding lemma, follow
directly from those of S.

Corollary 4.12. (i) a¡ is strictly increasing, (ii) a¡(0)G0, (iii) a¡(1)G1, (iv) a¡ is continu-
ous, (v) a¡ is (a.e.) differentiable.

Notice that differentiating the first-order condition (given by Xs(a¡(s), s)Gev(F
−1(s),

a¡(s))F−1′(s)) we obtain

a¡ ′(s)G−
XssAevv(F

−1′ )2Aev(F
−1)″

XasAeva(F
−1)′

H0,

where the numerator is the second-order condition of the agent’s maximization problem
and its strict negativity is guaranteed by the previous corollary.

Corollary 4.13. ev (F
−1(s), a¡(s))F−1′(s) is continuous and (a.e.) differentiable.

We can also show, as in the previous section, that the participation constraint will
hold with strict inequality for all agents (but for the subset of zero measure attending
school sG0).

Next, define the sets R(s)G{(a, w)uaGa¡(s), wne(F−1(s), a¡(s))} and T(s)G{(a, w)uwG

e(F−1(s), a), aHa¡(s)}. The union of these two sets is the boundary of the shaded area in
Figure 3. The next proposition establishes that the set of agents allocated to any given
school s in equilibrium will be given by the union of those sets.

Proposition 4.14. S(a, w)Gs, if and only if (a, w)∈R(s) ∪ T(s).

Notice that feasibility of S (market clearing) requires 1AsGe1
a¡(s)[1Ae(F−1(s), s)]da or,

more compactly,

a¡(s)GsA#
1

a¡(s)
e(F−1(s), a)da, ∀s∈I. (4.11)
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It follows from (4.11) and the properties of a¡(s) derived above that a¡(s)Fs, ∀s∈(0, 1).
Define e(a) ≡ e(F−1(S(a)), a), i.e. the equilibrium level of expenditures by agents of

ability a who are unconstrained. Accordingly, e(a¡(s))Ge(F−1(s), a¡(s)) gives the level of
expenditures undertaken by each agent in set R(s) (i.e. the lowest ability agents attending
school s). Notice that S(0)G0 and our assumptions on V imply that e(0)G0, i.e. agents
with zero ability incur zero expenditures.

The first-order condition and the tournament allocation rule can now be rewritten,
respectively, as

Xs(a¡(s), s)Gev(F
−1(s), a¡(s))F−1′(s), (4.12)

sGF (V(a¡(s), e(a¡(s))). (4.13)

Differentiation of (4.11), combined with (4.12) yields

a¡ ′(s)G
1AXs(a¡(s), s) #

1

a¡(s)

ev(F
−1(s), a)

ev(F
−1(s), a¡(s))

da

1Ae(a¡(s))
H0, ∀s∈I, (4.14)

where the sign of the inequality follows from our assumption of XsF1 and the fact that

#
1

a¡(s)

ev(F
−1(s), a)

ev(F
−1(s), a¡(s))

dao1,

(given evao0).
Finally, differentiating (4.13) to obtain 1GF ′ (VaCVee′ )a¡ ′ and using (4.14) together

with a change of variables, we obtain the following differential equation for the equilib-
rium signalling expenditure e

e′(a)G
1Ae(a)

1

Xs(a, S(a))
A#

1

a

ev(F
−1(S(a)), z)

ev(F
−1(S(a)), a)

dz

A
Va(a, e(a))

Ve(a, e(a))
, (4.15)

defined ∀a∈I, and with the boundary condition e(0)G0.22

4.3. Market vs. tournaments with borrowing constraints

In Section 3 we showed that, when agents have access to perfect capital markets, both
market prices and tournaments deliver the same (efficient) matches and hence the same
level of aggregate output in equilibrium. Aggregate consumption, however, was always
lower under tournaments because of the resources wasted in the signalling process. In this
section we show that in the presence of borrowing constraints those results no longer
hold. Instead, with borrowing constraints the matches achieved by tournaments always
deliver higher aggregate output than the market system. Furthermore, for signalling tech-
nologies that are sufficiently responsive to ability variations (relative to variations in
expenditures) in a sense that will be made precise below, aggregate consumption will also
be higher under tournaments.

Before we formalize and prove the above claims, we state a key difference between
the equilibrium allocations associated with the two mechanisms considered. Let a¡m(s) and

22. Our assumptions and previous results guarantee the continuity of the function given by the right hand
side of (4.15) as well as its derivative with respect to e, which in turn guarantees the existence and uniqueness
of a solution to the differential equation (see, e.g. Boyce and DiPrima (1992), Theorem 2.11.1).
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a¡ t(s) denote the lowest ability agents attending school s under markets and tournaments,
respectively. We have,

Lemma 4.15. a¡m(s)Fa¡ t(s), ∀s∈(0, 1).

The lemma establishes that the lowest ability agent among those allocated to a school
of a given quality has always higher ability under tournaments than under markets. In
other words, schools are ‘‘more diverse’’ in terms of ability under markets than under
tournaments. On the other hand, schools are more diverse in terms of wealth levels under
tournaments than under markets. Loosely speaking, both observations follow from the
fact that lower ability but high wealth individuals find it easier to ‘‘outbid’’ higher ability
but low wealth individuals under markets (where the same price applies to everyone) than
under tournaments (where the effective price is decreasing in ability). Since the efficient
allocation involves zero ability variation within schools, the previous result already sug-
gests that, in the presence of borrowing constraints, the equilibrium allocation may be
‘‘closer’’ to the efficient one under tournaments than under markets.

Before we formalize the intuition expressed above, we first establish that the joint
distribution of (a, s) generated by the tournament equilibrium always places greater prob-
ability mass in the north-east region of its support than the corresponding equilibrium
distribution under markets (i.e. the fraction of individuals with ability greater than some
given level a who attend schools of quality greater than some given s is always at least as
large under tournaments as it is under markets). This, in turn, implies that the value of
the cumulative distribution function at any (a, s)∈I2 under tournaments is never below
that under markets.

Lemma 4.16. Let Γ i(a, s)Ge1
a e1

0 1[Si(a, w)As)]dwda, for iGm, t. Then Γ t(a, s)n
Γm(a, s) for all (a, s)∈I2, with strict inequality, ∀aHa¡m(s).

Lemma 4.17. Let Φ i(a, s)Gea

0 e1
0 1[sASi(z, w)]dwdz, for iGm, t. Then Φt(a, s)n

Φm(a, s) for all (a, s)I2, with strict inequality, ∀aHa¡m(s).

We are now in a position to state the main result of the paper. Let Y m
0 G

e1
0 e1

0 X(a, Sm(a, w))dadw and Y t
0Ge1

0 e1
0 X(a, St(a, w))dadw denote aggregate output under

markets and tournaments, respectively, in the presence of borrowing constraints.

Theorem 4.18. Y t
0HY m

0 .

Thus, the level of aggregate output generated in the tournament equilibrium is always
strictly greater than the corresponding output level under markets. The intuition for this
result is as follows: with a market mechanism, identical expenditures by different agents
generate the same outcome—that is, individuals are allocated to the same school since
prices do not discriminate among individuals except with respect to their willingness and
ability to pay. In a tournament, on the other hand, identical expenditures by non-identical
agents do not lead to identical outcomes. In particular, by spending the same amount
higher-ability individuals produce higher scoresysignals than lower-ability individuals.
This implies that ceteris paribus, higher-ability individuals are, effectively, ‘‘less credit
constrained’’ than lower-ability agents. Allocative efficiency is enhanced since a social
planner would wish to allocate the higher-ability individual to the higher-quality school.

The dominance of tournaments over markets with respect to output, however, does
not necessarily carry over to aggregate consumption, since a fraction of aggregate output
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in the tournament equilibrium is wasted in signalling activities. Next we analyse the con-
ditions under which the equilibrium allocation under tournaments will also be associated
with higher aggregate consumption.

Given an arbitrary signalling technology represented by V, define π (a, e) ≡ Va(a, e)y
Ve(a, e), and also consider the family of signalling technologies {Vθ : IBℜC , s.t.
V θ

a (a, e)yV θ
e (a, e)Gθπ (a, e), θ ∈ℜC}. Let eθ (a) denote the expenditure of unconstrained

agents with ability a in the tournament equilibrium under borrowing constraints when the
signalling technology is Vθ .

Lemma 4.19. limθ→+S e1
0 eθ(a)daG0.

The preceding lemma states that by increasing the sensitivity of the signalling technol-
ogy to variations in ability (relative to variations in expenditures), aggregate signal expen-
ditures become arbitrarily close to zero. The next theorem establishes that increased
‘‘power’’ of the signalling technology brings the equilibrium allocation under tournaments
arbitrarily close to the efficient allocation (i.e. the one which maximizes aggregate output).

Theorem 4.20. Given any εH0, there exists a θ*∈ℜC such that, if θHθ*, then sA
a¡θ (s)oε almost everywhere in the unit interval.

Thus, for θ sufficiently large, the equilibrium allocation under tournaments is arbi-
trarily close to obtaining the efficient match given by S(a, w)Ga, ∀a∈I. Combining the
results of the previous lemma and theorem we can establish the existence of a threshold
value for θ , above which tournaments will dominate markets in terms of aggregate con-
sumption. Let Ctθ

0 and Y tθ
0 denote, respectively, aggregate consumption and aggregate

output in an equilibrium with tournaments and borrowing constraints when the signalling
technology is V θ . As before Cm

0 and Ym
0 are the corresponding counterparts under markets

and borrowing constraints.

Corollary 4.21. There exists a θ*∈ℜC such that Ctθ
0 HC m

0 , ∀θHθ*.

5. SUMMARY AND CONCLUSIONS

In this paper we studied a version of the matching problem, focusing on the impact of
borrowing constraints on equilibrium allocations under two alternative allocative mechan-
isms: markets and tournaments. With perfect capital markets both mechanisms achieve
the efficient allocation, characterized by positive assortative matching, though markets
generate higher aggregate consumption because of the waste associated with the signalling
process under tournaments. When borrowing constraints are present, tournaments domi-
nate markets in terms of aggregate output and—for sufficiently powerful signalling tech-
nologies—also in terms of aggregate consumption. In the latter case, the consumption
losses resulting from signalling waste are more than offset by the efficiency gains that arise
from the fact that the allocation under tournaments is ‘‘closer’’ to the efficient one.

We have not attempted to solve for the optimal mechanism in this environment.
While it would be of interest to characterize it, it is unlikely to be robust to a ‘‘social
planner’s’’ ignorance of such things as the exact utility functions, income distribution, and
ability distribution in the economy.23 Both the price mechanism and the tournament, on

23. See Fernández (1998) for a characterization of the optimal mechanism when wealth but not ability is
observable.
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the other hand, do not require the social planner to be informed about the parameters of
the economy. It is likely, though, that a mechanism that combined aspects of both prices
and tournaments might well dominate either extreme by trading-in some output efficiency
for a lower level of signalling waste. Other directions for future work include endogenizing
the supply of school quality and comparing mechanisms such as tournaments against
more traditional interventions in the credit market.

There are many other interesting questions that one could address in the framework
proposed in this paper. Not surprisingly, our model raises a number of issues that are
interesting from a political economy perspective. What are the implications for the income
distribution under both systems? Which agents would prefer which system? In particular,
the heterogeneity underlying our economy implies that efficiency increasing reforms, such
as policies to alleviate borrowing constraints or a greater reliance on tournaments, may
be difficult to implement politically (say, under a majority voting scheme) in the absence
of suitable compensating transfers.

APPENDIX

Proofs for Section 2.1

Proof of Lemma 2.1. Integration by parts of (2.1) with respect to x2 yields

∆WG#
b1

0

[U(x1 , x2) #
b2

0

∆ f (x1 , x2)dx2A#
b2

0

U2(x1 , x2) #
x2

0

∆ f (x1 , t)dtdx2 ]dx1 .

Integrating again by parts, this time with respect to x1 yields,

∆WG−#
b1

0

U1(x1 , b2 ) ∆F1(x1)dx1A#
b2

0

U2(b1 , x2)∆F2(x2)dx2C#
b1

0
#

b2

0

U12(x1 , x2)∆F (x1 , x2)dx2dx1 .

Recalling that the two distributions have identical marginals ∆F1(x1)G∆F2(x2)G0, the above expression
reduces to

∆WG#
b1

0
#

b2

0

U12(x1 , x2)∆F (x1 , x2)dx2dx1n0. (6.1) u u

Proof of Theorem 2.2. From (6.1 ) we have

#
1

0
#

1

0

X(a, s) [dΦ*(a, s)AdΦ (a, s)]dadsG#
1

0
#

1

0

Xas(a, s)[Φ*(a, s)AΦ*(a, s)]dads.

Since XasH0, in order to show that output is higher under S* than under S we simply need to show that
Φ*(a, s)AΦ (a, s)n0, ∀(a, s). But, Φ(a, s)oΦ (1, s)Gs and Φ (a, s)oΦ (a, 1)Ga, hence Φ (a, s)omin [a, s]G
Φ*(a, s), ∀(a, s) and since Φ*(a, s) ≠ Φ (a, s) for some (a, s), then we obtain a strict inequality. u u

Proofs for Section 4.1

Proof of Lemma 4.1. Suppose P(0)GεH0. Then there would be a subset of agents {(a, w)∈I2u0owFε}
with positive measure ε who would not be able to afford any school. But that implies that the measure of agents
allocated to schools in equilibrium would be strictly smaller than the measure of total school capacity, which is
inconsistent with market clearing. u u

Proof of Lemma 4.2. Continuity of P and market clearing trivially rule out P(s)H1. Suppose that P(s)G
1 for some s∈[0, 1]. Let (a, w) be such that S(a, w)Gs. Revealed preference and the fact that P(0)G0 then imply
X(a, s)A1nX(a, 0). But

X(a, s)A1GX(a, 0)C#
s

0

Xs(a, z)dzA1FX(a, 0)CsA1oX(a, 0),

where the strict inequality follows from the assumption Xs(a, s)F1, ∀(a, s)∈I2. The resulting contradiction
implies that P(s)G1 cannot hold. u u
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Proof of Lemma 4.3.

(i) Suppose that there did exist some (a , w), (a′, w′ )∈Q, with aHa′ such that sGS(a , w)oS(a′, w′ )Gs′. By
revealed preference X(a, s)AP(s)nX(a, s′ )AP(s′ ) and X(a′, s′ )AP(s′ )nX(a′, s)AP(s). Combining both inequalit-
ies we obtain X(a′, s′ )AX(a′, s)nX(a, s ′)AX(a, s) which rules out sFs′ since the latter would make the expression
inconsistent with the assumption XasH0 (note that this is an algebraic restatement of the single-crossing logic
developed earlier). What if sGs′? By construction both agents are unconstrained so their FOC must be satisfied
at s and s′, i.e. Xs(a, s)GP ′(s) and Xs(a′, s)GP ′(s). But that implies Xs(a, s)GXs(a′, s) which can hold only if aG
a′.

(ii) Suppose first that s̄GS(a, w) ≠ S(a, w″ )Gs¡ for two agents (a, w), (a, w″ )∈Q, and s̄Hs¡. Then both must
be indifferent between s̄ and s¡ and, since unconstrained, the FOC must hold for both of them. Note that no
other (a′, w′ )∈Q, a′ ≠ a, can attend any s∈[s̄, s̄] since this would contradict part (i). Furthermore, any (a′, w′ )
such that w′∈(P(s̄ ), P(1)) and a′≠ a also does not attend any s∈(s¡, s̄) since, given that a is indifferent between s̄
and s¡, the single-crossing condition implies that a′Ha strictly prefers s̄ to any s∈[s¡, s̄) and that a′Fa strictly
prefers s¡ to any s∈(s¡, s̄ ]. Who then attends the subset of schools (s¡, s̄ )? The above reasoning and market clearing
imply that, aside from agents with ability a (who have no positive measure), it must be a subset of those agents
z with w∈[P(s¡), P(s̄)] who attend s∈[s¡, s̄ ]. Thus market clearing would require s̄As¡oP(s̄)AP(s¡). But the indiffer-
ence of (a, w) between s̄ and s¡ implies that

P(s̄ )AP(s¡)GX(a, s̄)AX(a, s¡)G#
s̄

s¡
Xs(a, s)dsFs̄As¡,

given Xs(a, s)F1, ∀(a, s)∈I2. Thus, s̄As¡oP(s̄)AP(s¡)Fs̄As¡, which clearly cannot be satisfied. Hence, it must be
the case that S(a, w)GS(a, w″ ) for any two agents (a, w), (a, w″ )∈Q. Note that the result extends to any agent
(a, w″ ) with P(S(a, w))ow″oP(1), since she too can afford S(a, w). u u

Proof of Lemma 4.4.

(i) is an immediate consequence of Lemma 4.3.
(ii) If instead of S(0)G0 we had S(0)Gs¡H0, market clearing would require P(s¡)AP(s′ )G

es
¡s′ P ′(s)dsGs¡As′ for any s′Fs¡, which cannot be met given our assumption of Xs(a, s)F1, ∀(a, s)∈I2.

(iii) Follows directly from the strict monotonicity of S and market clearing.
(iv) Suppose that s¡Glimz→aA S(z)Flimz→aC S(z)Gs̄; monotonicity of S implies that no agent in Q will be

attending schools in the interval (s¡, s̄) and from the previous lemma the same is true for any agent with wealth
w∈[P(s̄), P(1)]. Market clearing thus implies s̄As¡oP(s̄)AP(s¡), and the same reasoning as in Lemma 4.3 leads to
a contradiction. Thus, limz→aAS(z)Glimz→aCS(z) and S is continuous.

(v) Follows from (i) and the boundedness of the range of S. u u

Proof of Corollary 4.6. Follows from continuity and differentiability of a¡(s) and from the fact that
P ′(s)GXs(a¡(s), s) holds ∀(a, w)∈Q. u u

Proof of Proposition 4.7. Above we showed that all agents in R(s) are assigned to school s. Who else
attends s? Note that any (a, w)∈Q does not attend s unless (a, w)∈R(s). Also, trivially, agents with w∈[0, P(s))
are ruled out, because they cannot afford it. Consider agents with w∈(P(s), P(1)), and aHa¡(s). We know that
Xs(a¡(s), s)GP ′(s), so it must be the case that Xs(a, s)HP ′(s) for those agents. Consequently, they would always
find it optimal to switch to a school s′Hs, since for s′ sufficiently close to s the school would be affordable and
the participation constraint would remain satisfied. So these agents do not attend s. Consider next agents with
w∈(P(s), P(1)), and aFa¡(s). Those agents cannot find it optimal to attend s since in their case Xs(a, s)FP ′(s),
implying that they would be better off at a lower ranked school. Consider, finally, agents in T(s). They cannot
afford a school of quality greater than s, so they will choose to attend some s′∈[0, s]. The same single crossing
logic used in Lemma 4.3 implies that if agent (a¡(s), 1) prefers s to any s∈[0, s] then so must all aHa¡(s). Conse-
quently, we can conclude that S(a, w)Gs if and only if (a, w)∈R(s) ∪ T(s). u u

Proofs for Section 4.3

Proof of Lemma 4.15. Totally differentiating (4.4) yields

a¡m′(s)G
1AP ′(s)(1Aa¡m(s))

1AP(s)
, (6.2)

which evaluated at sG0 yields a¡m′(0)G1AP ′(0).
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Evaluating (4.14) at sG0, we obtain

a¡ t′(0)G1AXs(0, 0) #
1

0

ev(F
−1(0), z)

ev(F
−1(0), 0)

dz

n1AXs(0, 0)G1AP ′(0)Ga¡m′(0),

where the inequality follows from the assumption that evao0 (implying that ev(F
−1(0), z)yev(F

−1(0), 0)o1), while
the second equality is a consequence of (4.6).

Suppose next that, contrary to the statement of the lemma, a¡m(s′ )Ha¡ t(s′ ) held for some s′∈(0, 1). Given
a¡ t(0)Ga¡m(0)G0 and the result that a¡ t′(0)Ha¡m′(0), continuity implies that there must then exist some s*∈(0, s′ )
such that a¡m(s*)Ga¡ t(s*) and a¡m′(s*)na¡ t′(s*). Furthermore, it must be the case that e(a¡ t(s*))HP(s*), since other-
wise, given VaH0 the mass of agents in schools ranked s and greater would be larger under tournaments than
under markets. Thus,

a¡ t′(s*)G

1AXs(a¡
t(s*), s*) #

1

a¡t(s*)

ev(F
−1(s*), z)

ev(F
−1(s*), a¡ t(s*))

dz

1Ae(a¡ t(s*))

H
1AP′(s*)(1Aa¡m(s*))

1AP(s*)
Ga¡m′(s*),

where the inequality uses (4.6) and, again, the assumption that evao0. But this contradicts the previous require-
ment that a¡m′(s*)na¡ t′(s*). u u

Proof of Lemma 4.16. Consider first the case of aoa¡m(s). From Lemma 4.15 we have aoa¡ t(s). Thus,
clearly Γm(a, s)GΓ t(a, s)G1As in that case. Next, suppose that a¡m(s)FaFa¡ t(s). Then Γm(a, s)F1AsGΓ t(a, s).
Finally, let ana¡ t(s). In that case we have Γ t(a, s)AΓm(a, s)Ge1

a [P(s)Ae(F−1(s), a)]daH0, where the inequality
follows from the fact that

#
1

a¡t(s)

[P(s)Ae(F−1(s), a)]daGΓ t(a¡ t(s), s)AΓm(a¡ t(s), s)H0,

combined with the observation that P(s)Ae(F−1(s), a) is strictly increasing in a for ana¡ t(s). Note that since
a¡m(s)F1, ∀s∈[0, 1), this implies that the set {a∈I: a¡m(s)Fao1} has a positive measure for all s∈[0, 1). u u

Proof of Lemma 4.17. Γ i(a, s)G1AΦ i(a, 1)AΦ i(1, s)CΦ i(a, s), for iGm, t. Furthermore, feasibility of S
(market clearing) implies identical marginal distributions for markets and tournaments, i.e. Φt(a, 1)GΦm(a, 1)G
a, and Φt(1, s)GΦm(1, s)Gs. It then follows from Lemma 4.16 that Φt(a, s)AΦm(a, s)GΓ t(a, s)AΓm(a, s)n0, for
all (a, s)∈I2, with strict inequality if aHa¡m(s). u u

Proof of Theorem 4.18. Using the joint c.d.f. for (a, s) introduced above we can write Y iG

e1
0 e1

0 X(a, s)dΦ i(a, s)dads, for iGm, t. Accordingly,

YtAYmG#
1

0
#

1

0

X(a, s)[dΦt(a, s)AdΦm(a, s)]dads.

Since X and Φ i satisfy the assumptions needed to apply the Levy–Paroush result, we have

YtAYmG#
1

0
#

1

0

Xas(a, s)[Φt(a, s)AΦm(a, s)]dadsH0,

(where the inequality follows from our assumption XasH0 and Lemma 4.17). u u

Proof of Lemma 4.19. The proof involves two steps. First we derive an upper bound for e1
0 eθ (a)da, given

θ . Then we show that this upper bound becmes arbitrarily small as θ→+S.
Define the set DθG{a∈I: eθ (a)nε}. Notice that Dθ⊂ (0, 1], since eθ (0)G0. Notice also that, ∀θ , continuity

of eθ (a) implies the existence of a partition {Dθ
1 , Dθ

2 , . . . , Dθ
N(θ )}, where Dθ

i G[d¡ θ
i , dr θ

i ], with measure given
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by µ (Dθ
i )Gdr θ

i Ad¡ θ
i , and such that DθG* i Dθ

i and Dθ
i ∩Dθ

j G0y, if j ≠ i. Let α ≡ Xr sy1AXs , where Xr sG

sup(a,s)∈I 2 Xs(a, s)F1. Note that we can write

#
Dθ

i

eθ (a)daG#
Dθ

i
1εC#

a

d¡θ
i

eθ′(z)dz2da

Gεµ (Dθ
i )C#

Dθ
i
#

a

d¡θ
i

1Aeθ (z)

1

Xs(z, S
θ (z))

A#
1

z

ev(v, u)

ev(v, z)
du

Aθπ (z, eθ (z)) dzda

Fεµ (Dθ
i )C#

Dθ
i
#

a

d¡θ
i

(αAθπ (z, eθ (z)))dzda

F(εCα )µ (Dθ
i )AθQθ

i ,

where Qθ
i ≡eDθ

i
ea

d¡θ
i

π (z, eθ (z))dzda. By construction, both arguments of π in the previous integral take values that
are bounded away from zero, thus implying that Qθ

i n0, with equality holding if and only if µ (Dθ
i )G0. Combin-

ing the fact that e1
0 eθ (a)daF∑N(θ )

iG1 eDθ
i
eθ (a)daCε (1Aµ (Dθ )) with the previous result we have

#
1

0

eθ (a)daFεCαAθ ∑
N(θ )

iG1
Qθ

i .

Since eθ (a) is non-negative for all θ, it follows that

θ ∑
N(θ )

iG1
Qθ

i FεCα .

Notice that the previous inequality requires that limθ→CS ∑N(θ )

iG1 Qθ
i G0, which in turn implies

limθ→CS µ (Dθ )G0. Given our definition of Dθ it follows that limθ→CS e1
0 eθ (a)daFε. Since the initial choice of

εH0 was arbitrary, it must be the case that limθ→CS e1
0 eθ (a)daG0. u u

Proof of Theorem 4.20. Suppose not and define the set RθG{s∈I: sAa¡θ (s)Hε}, and let µ (Rθ ) be the
measure of Rθ . Note that by market clearing (i.e. equation (4.11)), eθ (s)n (sAa¡θ (s))y(1Aa¡θ (s))Hε , ∀s∈Rθ .
Hence, e1

0 eθ (s)dsHe1
0[sAa¡θ (s)]dsHεµ (Rθ ). But this contradicts the previous lemma for any µ (Rθ )H0. u u

Proof of Corollary 4.21. From the previous theorem and lemma, as θ→S the allocation under tourna-
ments approaches the efficient allocation (and hence maximum output) and signalling waste converges to zero.
Consequently, aggregate consumption is also approaching its maximum level. Output and consumption under
markets, on the other hand, are always below the efficient levels. Hence for θ sufficiently large,
Ctθ0 HCm

0 , ∀θHθ*. u u
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